Project

4346

Chief Investigator

ROBERTS, Dr Jason - Australian Antarctic Division

Title

ICECAP II


Project aims

This airborne geophysics and oceanography project explores the Antarctic ice sheet structure, bedrock and changing ice volume to answer key questions about Antarctica and it's contribution to and current and future sea-level rise. Primarily, we will investigate one of the key drivers of rapid Antarctic Ice Sheet change: interaction between the ice sheet margins and the surrounding ocean. We will also investigate the stability of the grounded ice sheet for regions of enhanced basal force, factors leading to this enhancement, and conversely for areas particularly susceptible to rapid retreat of the ice sheet.

Additionally, this project will contribute to extending the long term record of atmospheric changes captured by the ice sheet by helping to identify sites suitable for ice core drilling to retrieve information over the previous one million+ years.

Project gallery


Project Summary of the Season 2015/16

The ICECAP II project's 2015/16 operations in East Antarctica included 24 flights, and collected 34,700 line kilometres of science data. Science highlights include:
1.   comprehensive survey of "Oldest Ice" ice core drilling targets in the vicinity of Concordia Station.
2.   extending the mapping of ice thickness and surface elevation of the East Antarctic grounding zone from Casey to Davis Stations.
3.   surveys of the bathymetry beneath the West and Cook Ice Shelves.
4.   survey of the newly discovered large subglacial lake in Princess Elizabeth Land.

Project Summary of the Season 2016/17

The ICECAP II project's 2016/17 operations in East Antarctica included 15 flights, and collected 21,646 line kilometres of science data. Science highlights include:
1. extensive bathymetric surveys between the Denman Glacier and Moscow University Ice Shelf
2. extending the mapping of ice thickness, surface elevation and bathymetry over the Shackleton Ice Shelf in collaboration with our Chinese colleagues as part of a quid-pro-quo agreement
3. successful deployment of 18 Airborne eXpendable Bathymetry Temperature (AXBT) probes to measure ocean temperature profiles and water column thickness

Project Summary of the Season 2017/18

The ICECAP II project's 2017/18 operations in East Antarctica included 10 flights, and collected 13,430 line kilometres of science data. Science highlights include:
1. extensive bathymetric surveys between the Denman Glacier and Moscow University Ice Shelf
2. extending the mapping of ice thickness, surface elevation and bathymetry over the Shackleton, Totten and Moscow University ice shelves
3. successful deployment of 25 Airborne eXpendable Bathymetry Temperature (AXBT) and 15 Airborne eXpendable Conductivity Temperature Depth (AXCTD) probes to measure ocean temperature and salinity profiles and water column thickness
In addition, conducted 5 survey flights with our Chinese colleagues as part of a quid-pro-quo agreement

Final Summary of Project Achievements

ICECAP II fulfilled its mission to explore ice sheet structure, Antarctic bedrock and changing ice volume to answer key questions about Antarctica and current and future sea-level rise. In particular, ICECAP II undertook 53 flights, and deployed 58 ocean sensors. This data was included in 2 major data compilations (BedMachine and ADMAP-2) that has enabled 174 additional studies into the Antarctic ice sheet and underlying geology to-date (Feb 2020). ICECAP has contributed to 15 high profile peer-reviewed journal papers in fields including ice sheet modelling, geology, site selection for drilling ice cores and interactions between the ice sheet and surrounding oceans and presented at 23 international conferences and workshops.

Category 1: Peer-reviewed literature

Vance T.R., Roberts J.L., Moy A.D., Curran M.A.J., Tozer C.R., Gallant A.J.E., Abram N.J., van Ommen T.D., Young D.A., Grima C., Blankenship D.D., Siegert M.J. (2016) Optimal site selection for a high-resolution ice core record in East Antarctica, Climate of the Past 12. 595-610; [Ref: 15756]

Aitken A.R.A., Betts P.G., Young D.A., Blankenship D.D., Roberts J.L., Siegert M.J. (2016) The Australo-Antarctic Columbia to Gondwana transition, Gondwana Research 29(1). 136-152; [Ref: 15804]

Jamieson S.S.R., Ross N., Greenbaum J.S., Young D.A., Aitken A.R.A., Roberts J.L., Blankenship D.D., Bo S., Siegert M.J. (2016) An extensive subglacial lake and canyon system in Princess Elizabeth Land, East Antarctica, Geology 44(2). 87-90; [Ref: 15805]

Maritati A., Aitken A.R.A., Young D.A., Roberts J.L., Blankenship D.D., Siegert M.J. (2016) The tectonic development and erosion of the Knox Subglacial Sedimentary Basin, East Antarctica, Geophysical Research Letters 43(20). 10,728-10,737; [Ref: 15806]

Aitken A.R.A., Roberts J.L., van Ommen T.D., Young D.A., Golledge N.R., Greenbaum J.S., Blankenship D.D., Siegert M.J. (2016) Repeated large-scale retreat and advance of Totten Glacier indicated by inland bed erosion, Nature 533. 385-389; [Ref: 15809]

Young D.A., Roberts J.L., Ritz C., Frezzotti M., Quartini E., Cavitte M.G.P., Tozer C.R., Steinhage D., Urbini S., Corr H.F.J., van Ommen T.D., Blankenship D.D. (2017) High-resolution boundary conditions of an old ice target near Dome C, Antarctica, The Cryosphere 11. 1897-1911; [Ref: 15879]

Roberts J.L., Curran M., Poynter S., Moy A., van Ommen T., Vance T., Tozer C., Graham F.S., Young D.A., Plummer C., Pedro J., Blankenship D., Siegert M. (2017) Correlation confidence limits for unevenly sampled data, Computers & Geosciences 104. 120-124; [Ref: 15880]

Golynsky A.V., Ferraccioli F., Hong J.K., Golynsky D.A., von Frese R.R.B., Young D.A., Blankenship D.D., Holt J.W., Ivanov S.V., Kiselev A.V., Masolov V.N., Eagles G., Gohl K., Jokat W., Damaske D., Finn C., Aitken A., Bell R.E., Armadillo E., Jordan T.A., Greenbaum J.S., Bozzo E., Caneva G., Forsberg R., Ghidella M., Galindo-Zaldivar J., Bohoyo F., Martos Y.M., Nogi Y., Quartini E., Kim H.R., Roberts J.L. (2018) New Magnetic Anomaly Map of the Antarctic, Geophysical Research Letters 45. 6437–6449; [Ref: 16013]

Graham F.S., Roberts J.L., Galton-Fenzi B.K., Young D., Blankenship D., Seigert M.J. (2017) A high-resolution synthetic bed elevation grid of the Antarctic continent, Earth System Science Data 267-279; [Ref: 16038]

Cavitte M.G.P., Parrenin F., Ritz C., Young D.A., Van Liefferinge B., Blankenship D.D., Frezzotti M., Roberts J.L. (2018) Accumulation patterns around Dome C East Antarctica in the last 73 kyr, The Cryosphere 1401-1414; [Ref: 16051]

Parrenin F., Cavitte M.G.P., Blankenship D.D., Chappellaz J., Fischer H., Gagliardini O., Masson-Delmotte V., Passalacqua O., Ritz C., Roberts J., Siegert M.J., Young D.A. (2017) Is there 1.5-million-year-old ice near Dome C, Antarctica?, The Cryosphere 11. 2427-2437; [Ref: 16059]

Dow C., McCormack F.S., Young D.A., Greenbaum J.S., Roberts J.L., Blankenship D.D. (2020) Totten Glacier subglacial hydrology determined from geophysics and modelling, Earth and Planetary Science Letters 1-9; [Ref: 16183]

Cook S., Astrom J., Zwinger T., Galton-Fenzi B., Greenbaum J.S., Coleman R. (2018) Modelled fracture and calving on the Totten Ice Shelf, The Cryosphere 12. 2401-2411; [Ref: 16184]

Morlighem M., Rignot E., Binder T., Blankenship D., Drews R., Eagles G., Eisen O., Ferraccioli F., Forsberg R., Fretwell V., Goel V., Greenbaum J., Gudmundsson H., Guo J., Helm V., Hofstede C., Howat I., Humbert A., Jokat W., Karlsson N., Lee W.S., Matsuoka K., Millan R., Mouginot J., Paden J., Pattyn F., Roberts J., Rosier S., Ruppel A., Seroussi H., Smith E., Steinhage D., Sun D., van den Broeke M., van Ommen T., van Wessem M., Young D. (2019) Deep glacial troughs and stabilizing ridges unveiled beneath the margins of the Antarctic ice sheet, Nature Geoscience .; [Ref: 16202]

Roberts J.L., Jong L.M., McCormack F.S., Curran M.A., Moy A.D., Etheridge D.M., Greenbaum J.S., Young D.A., Phipps S.J., Xue W., van Ommen T.D., Blankenship D.D., Siegert M.J. (2020) Integral correlation for uneven and differently sampled data, and its application to the Law Dome Antarctic climate record, Scientific Reports .; [Ref: 16335]

Noble T.L., Rohling E.J., Aitken A.R.A., Bostock H.C., Chase Z., Gomez N., Jong L.M., Roberts J.L. (2020) The Sensitivity of the Antarctic Ice Sheet to a Changing Climate Past Present and Future, Reviews of Geophysics .; [Ref: 16337]

Cui X., Jeofry H., Greenbaum J.S., Guo J., Li L., Lindzey L.E., Habbal F.A., Wei W., Young D.A., Ross N., Morlighem M., Jong L.M., Roberts J.L., Blankenship D.D., Bo S., Siegert M.J. (2020) Bed topography of Princess Elizabeth Land in East Antarctica, Earth System Science Data 2765–2774; [Ref: 16338]

McCormack F.S., Roberts J. L., Gwyther D.E., Morlighem M., Pelle T., Galton-Fenzi B.K. (2021) The impact of variable ocean temperatures on Totten Glacier stability and discharge, Geophysical Research Letters 48. .; [Ref: 16415]

Yan S., Blankenship D., Greenbaum J., Young D., Li L., Rutishauser A., Guo J., Roberts J., van Ommen T., Siegert M., Sun B. (2022) A newly discovered subglacial lake in East Antarctica likely hosts a valuable sedimentary record of ice and climate change, Geology .; [Ref: 16444]

McCormack F.S., Warner R.C., Seroussi H., Dow C.F., Roberts J.L., Treverrow A. (2022) Modeling the deformation regime of Thwaites Glacier, West Antarctica, using a simple flow relation for ice anisotropy (ESTAR), Journal of Geophysical Research: Earth Surface .; [Ref: 16468]

Cavitte M.G.P., Young D.A., Mulvaney R., Ritz C., Roberts J.L. (2021) A detailed radiostratigraphic data set for the central East Antarctic Plateau spanning from the Holocene to the mid-Pleistocene, Earth Systems Science Data .; [Ref: 16545]

Yang J., Guo J., Greenbaum J.S., Cui X., Jong L.M., Roberts J.L., van Ommen T.D. (2021) Bathymetry beneath the Amery Ice Shelf, East Antarctica, revealed by airborne gravity, Geophysical Research Letters .; [Ref: 16546]

Craw L., McCormack F.S., Cook S., Roberts J., Treverrow A. (2022) Modelling the influence of marine ice on the dynamics of an idealised ice shelf, Journal of Glaciology .; [Ref: 16590]

McCormack F.S., Roberts J.L., Dow C., Stal T., Halpin J.A., Reading A.M., Siegert M.J. (2022) Fine-scale geothermal heat flow in Antarctica can increase simulated subglacial melt estimates, Geophysical Research Letters .; [Ref: 16591]

Thompson S.S., Kulessa B., Luckman A., Halpin J.A., Greenbaum J.S., Pelle T., Habbal F.A., Guo J., Jong L.M., Roberts J.L., Sun B., Blankenship D.D. (2023) Glaciological history and structural evolution of the Shackleton Ice Shelf system, East Antarctica, over the past 60 years, The Cryosphere .; [Ref: 16624]